
Speeding up Serpent

Dag Arne Osvik ∗

March 15, 2000

Abstract

We present a method for finding efficient instruction sequences for the
Serpent S-boxes. Current implementations need many registers to store
temporary variables, yet the common x86 processors only have 8 registers,
of which even fewer are available for computations. The instructions are
also destructive, replacing one input with the output. Alternative versions
of the S-box instructions are presented, requiring only 5 registers and also
utilizing parallelism. Speedup of C language implementations of 24% is
shown on the Pentium Pro Processor, and 42% on the Pentium, both
compared to the previously fastest known implementation of Serpent.

1 Introduction

The main aspect of the finalists for the Advanced Encryption Standard is the
security level they provide, especially against already known attack methods.
Another aspect is the encryption speed they allow in different applications.
The goal of this work has been to find ways to improve the execution speed of
the Serpent algorithm on the x86 processors, including use of two-way parallel
execution.

Serpent[1], being an SP-network (it consists of substitutions and permuta-
tions), has two major parts; the S-boxes and the linear transformation. The
latter has a simple structure, and is well suited for manual optimization. The
S-boxes are 16-element permutations, and are performed in a bit parallel (also
known as bitslice) style by simple boolean operations.

2 The problem

The x86 processors, which can be found in nearly every personal computer, have
some clearly distinguishing features when compared to more modern architec-
tures. One of these is the small number of registers, only 8. Another is the
instruction set, where almost all instructions always modify one of their input
registers.

∗University of Bergen, Department of Informatics, N-5020 Bergen, Norway. Email address:
osvik@ii.uib.no

1

3 Previous work

Other efforts on optimizing Serpent have centered on the more purely mathe-
matical problem of lowering the number of boolean operations needed to express
the S-boxes [2]. Thus those essential properties of the x86 processors have been
ignored. The result is a high so-called ’register pressure’, meaning compilers
have to put temporary variables in memory, issuing load and store instructions
in addition to the actual computation. The compiler also gets the job of copying
values when needed. One note is appropriate here, though; lowering the number
of operations is a much better approach for RISC processors than it is for x86,
as RISC instructions don’t have to destroy an input value, and those processors
typically have 32 registers, making register pressure a non-issue. A comparison
of my results to those others (on x86) is given in a later section.

4 Our approach

One possible approach to solving a computational problem is to consider all
possible computations, ordered by their length. Searching to the depth needed
to find complete solutions in the case of Serpent S-boxes is infeasible using this
simple approach, so we need substantial improvements.

4.1 Serpent S-boxes

The Serpent S-boxes are 16-element permutations, implying that they belong
to a somewhat special subset of functions in {Z16 → Z16}. Now, every number
from 0 to 15 can be represented by a 4-digit binary number, so these functions
map 4 input bits to 4 output bits. They can also be split into 4 functions
mapping 4 input bits to 1 output bit, just like any 4-bit number may be split
into 4 separate bits. Now recall that any function can be uniquely specified by
telling its output value for every allowed input value. In the case of 4-to-1 bit
functions this is simply a list of 16 binary digits, given some ordering of the
input values.

4.2 Finding solutions

We need some way to transform any 4 input bits into the corresponding 4 output
bits using only those instructions available in the x86 instruction set, and in a
bit parallel way. We’ll use S2 as an example:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S2(x) 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Now rewrite x and S2(x) in binary:

2

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

S2,3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
S2,2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
S2,1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
S2,0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0

Each column in this table contains the bits of some value for x, as well as
the bits of the corresponding S2(x). The set of all columns contains all possible
values for x. The number of columns is thus determined by the number of
possible inputs, and is not related to the word length of any processor.

If we find a way of combining the xi rows by boolean operations so that we
get the S2,i rows, then applying those operations to the bits of an input value x
is equivalent to looking up S2(x). To see how this is actually done, we will look
at the execution of an instruction sequence for S2.

The x86 instructions usable for the S-boxes are these:

Instruction Effect C expression
and a, b a := a · b a &= b
or a,b a := a + b a |= b
xor a,b a := a⊕ b a ˆ= b
not a a := a⊕ 1 a = ˜a
mov a, b a := b a = b

Suppose we have 5 registers, named r0, . . . , r4, available for our computa-
tions, and 4 of them initially contain our 4 input bits (ri contains xi, 0 ≤ i ≤ 3).
As r4 is not an input register, we just ignore its previous contents. Thus we
have this initial state:

r4

r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The instruction sequence found by the search program (with two-way par-
allelism shown) is this:

3

mov r4, r0 and r0, r2
xor r0, r3 xor r2, r1
xor r2, r0 or r3, r4
xor r3, r1 xor r4, r2
mov r1, r3 or r3, r4
xor r3, r0 and r0, r1
xor r4, r0 xor r1, r3
xor r1, r4 not r4

Executing the first line of instructions makes the modifications r4 := r0;
r0 := r0 · r2, giving us this new state:

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Next, we perform r0 := r0 ⊕ r3; r2 := r2 ⊕ r1.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

Now things get more interesting. Notice the values in the r2 row after
r2 := r2 ⊕ r0; r3 := r3 + r4.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

r2 is now the same as S2,0, one of our wanted output bits.
Executing the next three lines of instruction pairs, we reach this state:

r4 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1
r3 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

4

Now r3 is the same as S2,1. The next two lines complete the work:

r4 = S2,3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
r3 = S2,1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 = S2,0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 = S2,2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

Thus we have a way of applying the function S2, using only boolean oper-
ations with 1-bit input values. Now remember that the columns were initially
just a list of possible input values. So the operations performed are actually
independent of the number and contents of the columns. So we may now e.g.
extend our table to 32 columns and allow any contents in each of the columns.
Then, when the operations are performed, they perform S2 32 times in parallel.
This is exactly what we do on a processor with 32-bit registers.

The search for such solutions basically tries all possible instruction sequences
of a given length, looking for rows equal to those of the S-box wanted. Shorter
sequences are generally preferred, so we start with a small length, progressing to
longer ones when no solution is found. To search for sequences capable of parallel
execution, like the one above, we require that an instruction not read the output
of an earlier instruction on the same line. It may write to an input register of
an earlier instruction, though, as that will in no way affect the outcome of the
other instruction.

4.3 Optimizations

Below are short descriptions of the most important optimizations of the search
algorithm. Almost all of these avoid removing solutions without keeping an
equivalent solution.

• Recursion stops when the register contents can no longer generate a per-
mutation.

• When two instruction sequences are identified as being equivalent, we
remove one of them from the search.

• No instruction other than mov may make a register contain a copy of the
value in another register.

• Unread registers may not be written to by the mov instruction.

• Negated registers (those last modified by a not instruction) are marked as
such, and may not again be negated until they have been read.

• Lookahead functions efficiently calculate a set containing all values reach-
able in one or two cycles.

5

• The search is narrowed by requiring an increasing number of result values
in the registers as the search goes deeper. This constraint is important for
deep searches, but its most strict variant (increasing the required number
as soon as there is at least one sequence that reached it) often drops better
solutions, and should be relaxed by postponing the requirement by one or
two cycles.

• The instructions are limited to using only 5 registers.

First experiences using the search program with 7 registers available showed
most solutions using 6 of those, while others only used 5 registers. Further
testing always provided solutions using 5 registers whenever a 6 register solution
was found. Given the reduced complexity of the search, and the advantages of
having the S-boxes do all their computations in only 5 registers, I chose to limit
the search accordingly.

5 Results

The S-box functions chosen from the search results have the properties shown
in the table. Cycle count is for running these on processors like the Pentium,
with two integer execution units running in parallel.

Function Instructions Cycles Registers
S0 18 9 5
S1 18 10 5
S2 16 8 5
S3 19 10 5
S4 20 10 5
S5 19 10 5
S6 18 10 5
S7 20 11 5

S−1
0 19 11 5

S−1
1 19 11 5

S−1
2 19 10 5

S−1
3 18 10 5

S−1
4 20 11 5

S−1
5 19 10 5

S−1
6 17 9 5

S−1
7 19 10 5

The low register pressure of these functions makes their compiled code com-
pletely free from loads and stores. So we only load input data and round keys,
and store the result. Except for the round key loads, no memory operations are
issued during encryption. This is completely different from the S-boxes used in

6

the AES submission package[1], as well as those found by Gladman and Simp-
son [2], which depend heavily on memory for storage during encryption. Also,
the memory footprint of the encryption routines themselves is much reduced; a
fully inlined encryption requires less than 4 kilobytes.

6 Optimized implementations

Due to the problem of making C compilers schedule instructions properly for
the Pentium, the S-box instructions were also incorporated into assembly rou-
tines for Serpent encryption and decryption. The result was then manually
tuned for this processor (which may make it slower on other processors). The
implementation was made with these constraints:

• The stack pointer register is reserved for its normal use.

• Make the routines suitable as plug-in replacements for the C routines in
the AES submittal of Serpent, allowing easy testing.

• One register contains a pointer to the round key table.

Keeping the stack and key table pointers, instead of using them as general
purpose registers, allows multiple simultaneous use of the routines, such as in
multithreaded environments.

A new set of four round keys is loaded 33 times during an encryption or
decryption. Reserving a register to point to the key table avoids having to
reload the pointer every time. The ideal solution for performance is to put the
round keys on the stack or in a fixed location, as that would free up the key
pointer (round keys would be fetched using the stack pointer). But, since the
pointer to the round key table is a parameter to the routines we replace, it is
needed.

Given these limitations, we still have those five registers needed for the S-
boxes, plus one free for whatever use we might have for it, like early loading
of a round key. This gives the opportunity to exploit the parallelism of the
Pentium nearly to its full extent, thus usually executing two instructions per
cycle (some instructions can only execute one at a time). The benefit of one
more free register, as could be gained by fixing the location of round keys, will
thus be minimal.

7 Performance comparison

Speed testing was done on these computers:

Processor Clock speed RAM size OS
486 SX 33 MHz 20 MB Linux 2.0
Pentium 100 MHz 64 MB Linux 2.0

(Dual) Celeron 333 MHz 256 MB Linux 2.2

7

The following tables give a comparison of the different implementations of
Serpent on these computers. My speed figures in Mbit/s are scaled to given
clock speeds, assuming all memory operations are performed in level 1 caches.
In the case of Pentium Pro, I compare against the best of Gladman’s most
recent numbers. On the others, numbers are compared to those reported by
Granboulan [3], using Gladman’s code.

• 486 DX/2-50

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles
Gladman’s code 0.48 12900

Osvik 3.8 1650 3.8 1660

• Pentium 90

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles
AES submission 7.17 1605 5.88 1956
Gladman’s code 8.56 1290

Osvik 12.7 907 12.7 905
Osvik, asm 14.4 800

• Pentium Pro 200

Encryption Decryption Key setup
Implementation Mbit/s cycles Mbit/s cycles cycles
AES submission 21.8 1170 20.6 1301

Gladman 27.0 945 26.9 951 1290
Osvik 33.7 759 33.2 770 1106

The compiler used to compile both my own and the AES submission C code
is PentiumGCC version 2.95.2. For my own code, I used the options “-O -
mpentium -fPIC -fomit-frame-pointer” on Pentium and “-O2 -mpentium -fPIC
-fomit-frame-pointer” on PPro. For the AES submission code I used “-O -
mpentium”. Other optimization settings I tried reduced the speed achieved.
All times are measured including parameter passing, function call and return
from the function. Timings on the 486 are not nearly as accurate as the others,
as it does not have a cycle counter.

Note: the figures quoted above are for Gladman’s results in C using a static
array of round keys which frees up an extra register. This only allows multiple
concurrent encryptions when they all use the same key. His C++ code, which
does not have this limitation, shows a 3% performance reduction.

8

8 Future directions

• My implementations may be further tuned - actually, I expected the Pen-
tium assembly implementation to come close to 735 cycles for encryption.
While trying to manually optimize the encryption, I found the Pentium
to be very touchy regarding tight dependencies involving rotation instruc-
tions. Given the Pentium processor’s slowdown when executing such in-
struction sequences, 735 cycles seems to be unreachable. Still, faster S-
boxes might exist, as my search has not been exhaustive.

• The key setup function can generate the encryption code with round keys
embedded directly in the instructions, thus removing the load instructions
and saving upto 66 cycles on the Pentium. This will increase key setup
time, though.

• 3-way parallelism on x86 (AMD Athlon). This only requires a (theo-
retically) simple extension of my current search program. The curious
can quite easily verify that S−1

6 and S−1
7 both can execute in 7 cycles

with up to 3 instructions/cycle, as opposed to 9 and 10 cycles on Pen-
tium/.../Pentium III.

• Hardware implementations have a natural emphasis on parallelism. Pre-
liminary results in this area look extremely promising; given 3-input nand
and nor gates, and (at most) 2-input versions of other gates, all S-boxes
can be performed with a gate depth of only 3. Combined with a depth of
4 for the linear transformation and 1 for key mixing, this indicates that
several Gb/s should be possible in CBC mode with common technology.
If we can also add 3-input (n)xor, the gate depth of one round is reduced
to no more than 5.

• The instruction sets of RISC processors may be viewed as a set of gates
from which we can build wide S-box functions. Their lack of 3-input
logical operations raises the maximum gate depth needed to 4. That is,
given enough parallelism on a RISC (or EPIC) chip, all S-boxes have
solutions requiring no more than 4 cycles to execute. This hardware-style
RISC optimization will be further investigated in the near future.

9 Acknowledgements

I would like to thank my supervisor, Lars R. Knudsen, for proposing this project,
and for his advice and criticisms regarding this article.

My parents and some of my friends and fellow students have been helpful
in various ways. Most of the search and timing tests where performed on Odd
Egil Nerland’s computers. Gisle Sælensminde has made an Ada implementa-
tion using my S-box functions, and in the process he made a Python script
automating inlining of the encryption functions. This was necessary to avoid
stressing the GCC register allocator with these rather intricate S-boxes. My C

9

and assembly implementions were also made using slightly modified versions of
his script, saving much work and time.

References

[1] RJ Anderson, E Biham, LR Knudsen, “Serpent: A Proposal for the Ad-
vanced Encryption Standard”

[2] BR Gladman:
http://www.btinternet.com/˜brian.gladman/cryptography technology/

[3] L Granboulan:
http://www.dmi.ens.fr/˜granboul/recherche/AES/timings.html

[4] Intel Corporation, “Intel Architecture Optimization Manual”, Order Num-
ber 242816-003, 1997.

Appendix

Below are all the S-box functions selected from the search results. The functions
expect their input values to be in r0 .. r3, ordered from least to most significant
bit. The contents of r4 are ignored. Output values are given in the registers
listed at the bottom of each table, again ordered from least to most significant
bit.

S0 S−1
0

r3 ˆ= r0 r4 = r1 r2 =˜ r2 r4 = r1
r1 &= r3 r4 ˆ= r2 r1 |= r0 r4 =˜ r4
r1 ˆ= r0 r0 |= r3 r1 ˆ= r2 r2 |= r4
r0 ˆ= r4 r4 ˆ= r3 r1 ˆ= r3 r0 ˆ= r4
r3 ˆ= r2 r2 |= r1 r2 ˆ= r0 r0 &= r3
r2 ˆ= r4 r4 =˜ r4 r4 ˆ= r0 r0 |= r1
r4 |= r1 r1 ˆ= r3 r0 ˆ= r2 r3 ˆ= r4
r1 ˆ= r4 r3 |= r0 r2 ˆ= r1 r3 ˆ= r0
r1 ˆ= r3 r4 ˆ= r3 r3 ˆ= r1

r2 &= r3
r4 ˆ= r2

r1, r4, r2, r0 r0, r4, r1, r3

10

S1 S−1
1

r0 =˜ r0 r2 =˜ r2 r4 = r1 r1 ˆ= r3
r4 = r0 r0 &= r1 r3 &= r1 r4 ˆ= r2
r2 ˆ= r0 r0 |= r3 r3 ˆ= r0 r0 |= r1
r3 ˆ= r2 r1 ˆ= r0 r2 ˆ= r3 r0 ˆ= r4
r0 ˆ= r4 r4 |= r1 r0 |= r2 r1 ˆ= r3
r1 ˆ= r3 r2 |= r0 r0 ˆ= r1 r1 |= r3
r2 &= r4 r0 ˆ= r1 r1 ˆ= r0 r4 =˜ r4
r1 &= r2 r4 ˆ= r1 r1 |= r0
r1 ˆ= r0 r0 &= r2 r1 ˆ= r0
r0 ˆ= r4 r1 |= r4

r3 ˆ= r1
r2, r0, r3, r1 r4, r0, r3, r2

S2 S−1
2

r4 = r0 r0 &= r2 r2 ˆ= r3 r3 ˆ= r0
r0 ˆ= r3 r2 ˆ= r1 r4 = r3 r3 &= r2
r2 ˆ= r0 r3 |= r4 r3 ˆ= r1 r1 |= r2
r3 ˆ= r1 r4 ˆ= r2 r1 ˆ= r4 r4 &= r3
r1 = r3 r3 |= r4 r2 ˆ= r3 r4 &= r0
r3 ˆ= r0 r0 &= r1 r4 ˆ= r2 r2 &= r1
r4 ˆ= r0 r1 ˆ= r3 r2 |= r0 r3 =˜ r3
r1 ˆ= r4 r4 =˜ r4 r2 ˆ= r3 r0 ˆ= r3

r0 &= r1 r3 ˆ= r4
r3 ˆ= r0

r2, r3, r1, r4 r1, r4, r2, r3

S3 S−1
3

r4 = r0 r0 |= r3 r4 = r2 r2 ˆ= r1
r3 ˆ= r1 r1 &= r4 r0 ˆ= r2 r4 &= r2
r4 ˆ= r2 r2 ˆ= r3 r4 ˆ= r0 r0 &= r1
r3 &= r0 r4 |= r1 r1 ˆ= r3 r3 |= r4
r3 ˆ= r4 r0 ˆ= r1 r2 ˆ= r3 r0 ˆ= r3
r4 &= r0 r1 ˆ= r3 r1 ˆ= r4 r3 &= r2
r4 ˆ= r2 r1 |= r0 r3 ˆ= r1 r1 ˆ= r0
r1 ˆ= r2 r0 ˆ= r3 r1 |= r2 r0 ˆ= r3
r2 = r1 r1 |= r3 r1 ˆ= r4
r1 ˆ= r0 r0 ˆ= r1

r1, r2, r3, r4 r2, r1, r3, r0

11

S4 S−1
4

r1 ˆ= r3 r3 =˜ r3 r4 = r2 r2 &= r3
r2 ˆ= r3 r3 ˆ= r0 r2 ˆ= r1 r1 |= r3
r4 = r1 r1 &= r3 r1 &= r0 r4 ˆ= r2
r1 ˆ= r2 r4 ˆ= r3 r4 ˆ= r1 r1 &= r2
r0 ˆ= r4 r2 &= r4 r0 =˜ r0 r3 ˆ= r4
r2 ˆ= r0 r0 &= r1 r1 ˆ= r3 r3 &= r0
r3 ˆ= r0 r4 |= r1 r3 ˆ= r2 r0 ˆ= r1
r4 ˆ= r0 r0 |= r3 r2 &= r0 r3 ˆ= r0
r0 ˆ= r2 r2 &= r3 r2 ˆ= r4
r0 =˜ r0 r4 ˆ= r2 r2 |= r3 r3 ˆ= r0

r2 ˆ= r1
r1, r4, r0, r3 r0, r3, r2, r4

S5 S−1
5

r0 ˆ= r1 r1 ˆ= r3 r1 =˜ r1 r4 = r3
r3 =˜ r3 r4 = r1 r2 ˆ= r1 r3 |= r0
r1 &= r0 r2 ˆ= r3 r3 ˆ= r2 r2 |= r1
r1 ˆ= r2 r2 |= r4 r2 &= r0 r4 ˆ= r3
r4 ˆ= r3 r3 &= r1 r2 ˆ= r4 r4 |= r0
r3 ˆ= r0 r4 ˆ= r1 r4 ˆ= r1 r1 &= r2
r4 ˆ= r2 r2 ˆ= r0 r1 ˆ= r3 r4 ˆ= r2
r0 &= r3 r2 =˜ r2 r3 &= r4 r4 ˆ= r1
r0 ˆ= r4 r4 |= r3 r3 ˆ= r4 r4 =˜ r4
r2 ˆ= r4 r3 ˆ= r0

r1, r3, r0, r2 r1, r4, r3, r2

S6 S−1
6

r2 =˜ r2 r4 = r3 r0 ˆ= r2 r4 = r2
r3 &= r0 r0 ˆ= r4 r2 &= r0 r4 ˆ= r3
r3 ˆ= r2 r2 |= r4 r2 =˜ r2 r3 ˆ= r1
r1 ˆ= r3 r2 ˆ= r0 r2 ˆ= r3 r4 |= r0
r0 |= r1 r2 ˆ= r1 r0 ˆ= r2 r3 ˆ= r4
r4 ˆ= r0 r0 |= r3 r4 ˆ= r1 r1 &= r3
r0 ˆ= r2 r4 ˆ= r3 r1 ˆ= r0 r0 ˆ= r3
r4 ˆ= r0 r3 =˜ r3 r0 |= r2 r3 ˆ= r1
r2 &= r4 r4 ˆ= r0
r2 ˆ= r3

r0, r1, r4, r2 r1, r2, r4, r3

12

S7 S−1
7

r4 = r1 r1 |= r2 r4 = r2 r2 ˆ= r0
r1 ˆ= r3 r4 ˆ= r2 r0 &= r3 r4 |= r3
r2 ˆ= r1 r3 |= r4 r2 =˜ r2 r3 ˆ= r1
r3 &= r0 r4 ˆ= r2 r1 |= r0 r0 ˆ= r2
r3 ˆ= r1 r1 |= r4 r2 &= r4 r3 &= r4
r1 ˆ= r0 r0 |= r4 r1 ˆ= r2 r2 ˆ= r0
r0 ˆ= r2 r1 ˆ= r4 r0 |= r2 r4 ˆ= r1
r2 ˆ= r1 r1 &= r0 r0 ˆ= r3 r3 ˆ= r4
r1 ˆ= r4 r2 =˜ r2 r4 |= r0 r3 ˆ= r2
r2 |= r0 r4 ˆ= r2
r4 ˆ= r2

r4, r3, r1, r0 r3, r0, r1, r4

13

